Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket.
نویسندگان
چکیده
Chitin ranks next to cellulose as the most important bio-polysaccharide which can primarily be extracted from crustacean shells. However, the emergence of new areas of the application of chitin and its derivatives are on the increase and there is growing demand for new chitin sources. In this study, therefore, an attempt was made to extract chitin from the house cricket (Brachytrupes portentosus) by a chemical method. The physicochemical properties of chitin and chitosan extracted from crickets were compared with commercial chitin and chitosan extracted from shrimps, in terms of proximate analysis in particular, of their ash and moisture content. Also, infrared spectroscopy, x-ray diffraction (XRD), scanning electron microscopy and elemental analysis were conducted. The chitin and chitosan yield of the house cricket ranges over 4.3%-7.1% and 2.4%-5.8% respectively. Chitin and chitosan from crickets compares favourably with those extracted from shrimps, and were found to exhibit some similarities. The result shows that cricket and shrimp chitin and chitosan have the same degree of acetylation and degree of deacetylation of 108.1% and 80.5% respectively, following Fourier transform infrared spectroscopy. The characteristic XRD strong/sharp peaks of 9.4 and 19.4° for α-chitin are common for both cricket and shrimp chitin. The percentage ash content of chitin and chitosan extracted from B. portentosus is 1%, which is lower than that obtained from shrimp products. Therefore, cricket chitin and chitosan can be said to be of better quality and of purer form than commercially produced chitin and chitosan from shrimp. Based on the quality of the product, chitin and chitosan isolated from B. portentosus can replace commercial chitin and chitosan in terms of utilization and applications. Therefore, B. portentosus is a promising alternative source of chitin and chitosan.
منابع مشابه
Chitin from the mollusc Chiton: Extraction, characterization and chitosan preparation
This study presents the first ever data of extracting chitin from the Chiton shell, which then converted to the soluble chitosan by soaking in the 45% NaOH solution. The obtained chitin and chitosan were characterized by the seven different methods. Antioxidant activity of the extracted chitosan was also evaluated using the two methods. The shell content was divided into calcium carbonate (90.5...
متن کاملChitin from the mollusc Chiton: Extraction, characterization and chitosan preparation
This study presents the first ever data of extracting chitin from the Chiton shell, which then converted to the soluble chitosan by soaking in the 45% NaOH solution. The obtained chitin and chitosan were characterized by the seven different methods. Antioxidant activity of the extracted chitosan was also evaluated using the two methods. The shell content was divided into calcium carbonate (90.5...
متن کاملFunctional Characterization of Chitin and Chitosan
Chitin and its deacetylated derivative chitosan are natural polymers composed of randomly distributed -(1-4)linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). Chitin is insoluble in aqueous media while chitosan is soluble in acidic conditions due to the free protonable amino groups present in the D-glucosamine units. Due to their natural origin, both chitin a...
متن کاملمقایسه ی خواص ضد باکتری کیتین، کیتوزان و کیتوالیگومرهای به دست آمده از پوسته ی میگوی سفید سرتیز (Metapenaeus affinis )
Background and purpose: Chitin is one of the main components of crustaceans’ exoskeleton. Chitosan is produced by deacetylation of chitin. Molecular weight and degree of deacetylation play important roles in biological activity of chitin, chitosan, and their derivatives. So far, various derivatives of chitin and chitosan are obtained. The purpose of this study was to prepare derivatives o...
متن کاملApplication of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan
Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical materials
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2018